Fractional L-intersecting families

نویسندگان

  • Niranjan Balachandran
  • Rogers Mathew
  • Tapas Kumar Mishra
چکیده

Let L = {1 b1 , . . . , as bs }, where for every i ∈ [s], ai bi ∈ [0, 1) is an irreducible fraction. Let F = {A1, . . . , Am} be a family of subsets of [n]. We say F is a fractional L-intersecting family if for every distinct i, j ∈ [m], there exists an ab ∈ L such that |Ai ∩Aj | ∈ {ab |Ai|, ab |Aj |}. In this paper, we introduce and study the notion of fractional L-intersecting families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersecting designs from linear programming and graphs of diameter two

We investigate l-designs (regular intersecting families) and graphs of diameter 2. The optimal configurations are either projective planes or design-like structures closely related to finite geometries. The new results presented here are corollaries of a recent improvement about uniform hypergraphs with maximal fractional matchings. We propose several open problems.

متن کامل

Almost Cross-Intersecting and Almost Cross-Sperner Pairs of Families of Sets

For a set G and a family of sets F let DF (G) = {F ∈ F : F ∩ G = ∅} and SF (G) = {F ∈ F : F ⊆ G or G ⊆ F}. We say that a family is l-almost intersecting, (≤ l)-almost intersecting, l-almost Sperner, (≤ l)-almost Sperner if |DF (F )| = l, |DF (F )| ≤ l, |SF (F )| = l, |SF (F )| ≤ l (respectively) for all F ∈ F . We consider the problem of finding the largest possible family for each of the above...

متن کامل

3-Wise Exactly 1-Intersecting Families of Sets

Let f(l,t,n) be the maximal size of a family F ⊂ 2[n] such that any l ≥ 2 sets of F have an exactly t ≥ 1-element intersection. If l ≥ 3, it trivially comes from [8] that the optimal families are trivially intersecting (there is a t-element core contained by all the members of the family). Hence it is easy to determine f(l, t, n) = ⌊ l 2(n− 1) ⌋ +1. Let g(l, t, n) be the maximal size of an l-wi...

متن کامل

Chain Intersecting Families

Let F be a family of subsets of an n-element set. F is called (p,q)-chain intersecting if it does not contain chains A1 ( A2 ( · · · ( Ap and B1 ( B2 ( · · · ( Bq with Ap∩Bq = ∅. The maximum size of these families is determined in this paper. Similarly to the p = q = 1 special case (intersecting families) this depends on the notion of r-complementing-chain-pair-free families, where r = p + q − ...

متن کامل

Almost Intersecting Families of Sets

Let us write DF (G) = {F ∈ F : F ∩ G = ∅} for a set G and a family F . Then a family F of sets is said to be (≤ l)-almost intersecting (l-almost intersecting) if for any F ∈ F we have |DF (F )| ≤ l (|DF (F )| = l). In this paper we investigate the problem of finding the maximum size of an (≤ l)almost intersecting (l-almost intersecting) family F . AMS Subject Classification: 05D05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018